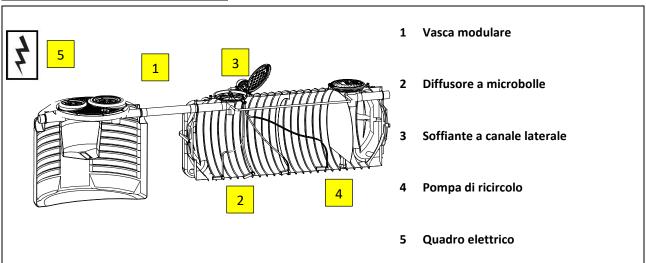


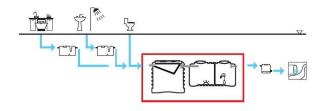
IMPIANTO OSSIDAZIONE BIOLOGICA MODULARE MEDIO

Modello: IOB MM 8500 T3


IMP. FANGHI ATTIVI

Descrizione

Impianto di ossidazione biologica in manufatto orizzontale di polietilene modello modulare da interro, costruito nella tecnica di stampaggio rotazionale a moduli rinforzati con nervature verticali e orizzontali, assemblati tramite elettrofusione, con coperchi a ribalta su ogni modulo. L'impianto è suddiviso in due fasi di trattamento: sedimentazione primaria e trattamento secondario. La sedimentazione primaria avviene sul primo vano del serbatoio modulare, il trattamento secondario di ossidazione biologica e sedimentazione secondaria è presente negli altri vani del serbatoio modulare. Sono inoltre presenti diffusori a membrana per l'immissione di aria a bolle fini e pompa per il ricircolo fanghi in testa all'ossidazione o alla sedimentazione primaria. All'interno del serbatoio, nel primo comparto avviene la separazione del materiale sedimentabile assieme alla digestione anaerobica dei fanghi, nel secondo la digestione aerobica delle sostanze organiche, mentre nel terzo ed ultimo comparto avviene la sedimentazione secondaria del fango ed suo ricircolo, tramite elettropompa monofase, in testa all'impianto. Il liquame in uscita dal manufatto potrà essere scaricato in acque superficiali o inviato a ulteriori fasi di trattamento. L'impianto di ossidazione biologica è dotato di fori per l'ancoraggio sui piedi di appoggio di ogni modulo, per evitare il galleggiamento in presenza di acqua di falda, sfiati, tronchetti in PVC ingresso e uscita liquami e tappi per l'ispezione e la manutenzione periodica.


Configurazione standard prodotto

Funzione e utilizzo

L'impianto di ossidazione biologica viene utilizzato per il trattamento completo delle acque di scarico nere provenienti da civile abitazione o da scarichi assimilabili, con recapito diverso dalla rete fognaria ed è da utilizzarsi a valle di degrassatori.

Nell'impianto avviene dapprima la sedimentazione del materiale sedimentabile e successivamente la digestione aerobica delle sostanze organiche da parte di microrganismi decompositori, grazie all'impiego di microbolle fini di aria, generate da un compressore a membrane. Le particelle fioccose, che si creano in quest'ultimo comparto, vengono poi separate dall'acqua mediante l'impiego del sedimentatore secondario. L'uscita dall'impianto di ossidazione biologica, del liquame così chiarificato, avviene mediante tubazione immersa nel liquido.

Norme e certificazioni

Conforme alle norme: UNI EN 12566-1/3

Rispettano le prescrizioni: D.Lgs. n° 152 del 03/04/2006 parte III

Dimensionamento

I parametri adottati per il dimensionamento dell'impianto di ossidazione biologica, rilevabili dalla bibliografia di settore, consentono una elevata stabilizzazione dei fanghi ed una accentuata mineralizzazione degli stessi. Ne deriva una produzione di fango di supero ridotta, che consente una gestione dell'impianto snella e semplificata riducendo al massimo le frequenze di allontanamento dei fanghi di supero prodotti. La sezione di sedimentazione secondaria, opportunamente dimensionata in funzione della velocità di risalita dei SST, permette la chiarificazione del liquame in zona di calma per effetto della decantazione per gravità delle particelle di fango in sospensione. Per l'ottenimento di una migliore qualità dello scarico in uscita in ordine alla concentrazione dei batteri (coliformi totali, escherichia coli ecc..), è opportuno inserire una sezione di disinfezione finale da ottenersi con apposita vasca di contatto fra l'acqua e ipoclorito di sodio.

Parametri di calcolo

Fattore di carico del fango: 0,4 kg BOD₅/Kg MLSS x g. Carico organico: 60 g BOD₅/A.E. x giorno

Portata di punta: 3x Qm

Oc. Load (Carico di Ossigeno Specifico): 2.4 Kg O₂/Kg BOD₅
Carico idraulico: 200 litri/A.E. x giorno

Concentrazione fanghi in vasca: 3500 ppm

TABELLE DATI

Di processo

		Vol. lt.	Trattamento pri	mario	Trattamento se	econdario e affinamento
Modello	A.E.		Manufatto	Vol.	- Manufatto	Ricircolo fanghi
			ivialiulatto	lt	Ivialiulatio	Kicircolo faligili
IOB MM 8500 T3	46	14990	IMF CR 7000 DS	IMF CR 7000 DS 7000		Pompa 0.37 Kw

Dimensionali

Modello	Luvla	h	ho	h	Tubi din/out	Таррі			
	LuxLa	rı	he	hu	Tubi ø in/out	20	40	60	
	cm	cm	cm	cm	mm		cm		
IOB MM 8500 T3	695X230	220	190	154	160	-	2	2	

Note:

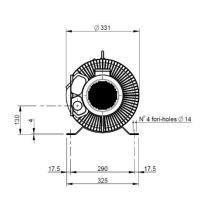
- Le quote e le dimensioni dei manufatti realizzati in PE tramite stampaggio rotazionale, possono avere una tolleranza +/- 3%
- Le dimensioni sono riferite ai seguenti parametri:
- Volume Vol.: è il volume utile dell'accumulo
- larghezza La: si riferisce alla larghezza massima dell'impianto
- lunghezza Lu: si riferisce alla lunghezza dell'intero impianto considerando una distanza fra i manufatti pari a 50 cm
- altezza H: si riferisce alla misura massima di altezza di uno dei manufatti componenti l'impianto

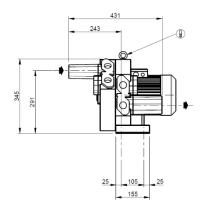
Accessori disponibili e consigliati

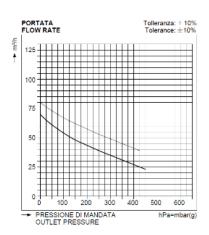
Prolunga
 Chiusino telescopico
 PRO X600
 CHI Y600-400
 CHI Y 800-600

Pozzetto fiscale
 POF O 125

Componenti elettromeccaniche

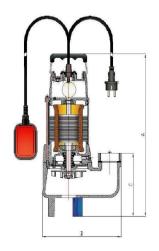






3 Soffiante a canale

			Dati prodotto	•
Modello	Modello	Descrizione	Alimentazione	pot.
	fornitore		V	W
SOF CAN 110 M	CL 2R32	Compressore a membrana	230	1100

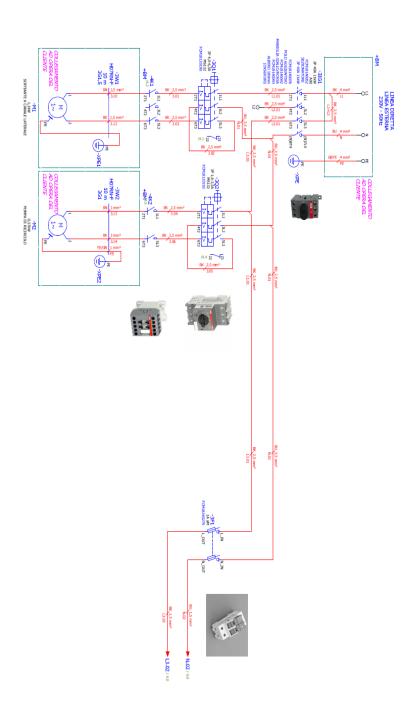


4 Pompa di rilancio

			Dati prodotto			
Modello	Modello	Descrizione	Alimentazione	pot.		
	fornitore		V	kW		
POM Z L 037 MM	VTX 50 G	Pompa per acque con girante arretrata.	230	0,37		

Modello	- Model			Ampere Q (m³/h - I/min)												
230V - 50Hz	400V - 50Hz	P	2	P1			0	0,6	3,0	4,8	6,0	7,2	9,0	10,8	12,0	15,0
Monofase	Trifase			(kW)	1ph	3ph	0	10	50	80	100	120	150	180	200	250
Single-phase	Three-phase	(kW)	(kW) (HP)					H (m)								
VTXS 35/G		0,28	0,36	0,45	2,10		7,5	6,9	6,5	5,6	4,9	4,1	3,2	2,2	1,9	
VTXS 50/G		0,37	0,50	0,55	2,60		8,5	8,0	7,8	7,2	7,0	6,5	5,8	3,9	3,2	0,8

Modello - Model		Dimension Dimension	DNM	kg		
	Α	В	С			
VTXS 35	360	165,0	80,0	1" 1/4	8,5	
VTXS 50	400	165,0	80,0	1 1/4	9,0	
VTXS 75	438	246,5	172,5	2"	16,0	
VTXS 100	448	246,5	172,5	2"	18,0	
VTXS 150	458	246,5	172,5	2"	19,0	
VTXS 200/T	458	246,5	172,5	2"	20,0	



5 Quadro elettrico temporizzato di comando soffiante

	Dati prodotto							
Modello	Alimentazione	Pot.	Corrente a pieno carico	Frequenza				
	V	Kw	А	Hz				
QAIR Z 2 CM	230	1.5	9	50				

MANUTENZIONE IMPIANTO OSSIDAZIONE SECONDARIA

- 1 Tubo ingresso
- 2 Sedimentazione primaria
- 3 Alimentazione fanghi attivi
- 4 Camera ossidazione a fanghi attivi
- 5 Diffusori aria
- 6 Alimentazione sedimentazione secondaria
- 7 Ricircolo fanghi con pompa
- 8 Risalita liquame chiarificato
- 9 Compressore soffiante
- 10 Tubo uscita

Installazione

Per l'installazione attenersi alle indicazioni riportate nel nostro manuale "Posa e Movimentazione".

Avviamento

Riempire i manufatti di acqua pulita al fine di avviare correttamente il processo biologico.

- Alimentare le vasche con liquame grezzo

Al fine di accelerare le operazioni di avviamento del ciclo depurativo, è consigliabile inserire batteri liofilizzati.

L'avviamento del sistema depurativo secondario con processo a fanghi attivi alimentando la vasca con liquame proveniente da trattamento primario adeguato.

Regolare il timer di funzionamento del compressore con funzionamento continuo (24h/24h).

Dopo alcune settimane di alimentazione si dovrà notare la scomparsa di schiume superficiali, la formazione di fango nella zona di aerazione (intorbidamento marrone) e la conseguente chiarificazione del refluo in uscita dalla zona di sedimentazione secondaria.

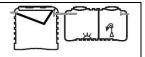
Ad avviamento avvenuto regolare il funzionamento del compressore orientativamente con 30 ' di marcia e 30' di fermo (tempi da valutare comunque in funzione della qualità del refluo in uscita).

Manutenzione

Verifiche periodiche:

Le verifiche di seguito descritte dopo l'avvenuto avviamento del processo depurativo, è necessario provvedere con cadenza almeno trimestrale ai seguenti controlli:

- Controllo ed allontanamento dei materiali grossolani che non devono ostruire le tubazioni di ingresso/uscita (rif.1;5) dei liquami e dello sfiato.
- Regolare i tempi di marcia e arresto del compressore in funzione della qualità del refluo in uscita.
- Prelevare periodicamente (almeno una volta all'anno) i fanghi di formatisi sulla sezione di aerazione nel caso di eccessiva concentrazione.
- Pulire le eventuali croste superficiali formatesi nella zona di uscita di sedimentazione secondaria
- Pulire altresì periodicamente i diffusori da eventuali intasamenti (questa operazione può essere effettuata immergendo gli stessi per 15' in una soluzione di acqua e ipoclorito di sodio dopo pulizia della superficie con getto d'acqua a pressione)
- Controllare che l'assorbimento del compressore rientri nei dati di targa dell'apparecchiatura
- Provvedere periodicamente alla pulizia del filtro del compressore.
- Riempire la vasca di nuovo con acqua pulita in caso di prelievo dei fanghi di supero



CERTIFICAZIONE DI CONFORMITA' IMPIANTO OSSIDAZIONE BIOLOGICA

Modello: IOB MM 8500 T3

Gli impianti ad ossidazione biologica vengono utilizzati per il trattamento completo delle acque reflue domestiche o assimilate secondo quanto indicato nelle schede tecniche di prodotto (STC 01).

Sono realizzati in polietilene, mediante il sistema di "stampaggio rotazionale" e sono conformi ai requisiti delle seguenti Norme:

UNI EN 12566-3 D.Lgs. n° 152 del 03/04/2006 parte III **(E**

Rendimenti depurativi

Rimozione: sostanze sedimentabili > 90%

BOD5 > 70%

Recapito finale dello scarico

Acque superficiali

<u>Avvertenze</u>

Precisiamo che il rendimento depurativo dell'impianto STARPLAST dipende dalla messa a punto di tutto l'impianto depurativo dei reflui trattati, dalle caratteristiche del liquame in ingresso conformi a quelle riportate nei dati di progetto ed ai parametri caratteristici di un'acqua reflua domestica od assimilabile proveniente da trattamento primario, dal relativo stato d'uso nonché dal suo dimensionamento, dalla sua posa in opera e dalla sua manutenzione periodica.

Raccomandiamo di verificare l'idoneità dell'impianto STARPLAST con l'organo competente del territorio, poiché si riscontrano sostanziali diversità sulle soluzioni ammesse dagli Enti locali che potrebbero emanare disposizioni diverse e più restrittive nel rispetto di quanto indicato dal D.Lgs. 152/06.

Le soluzioni impiantistiche suggerite da Starplast non sostituiscono come ruolo e funzione né il Tecnico competente né l'Autorità alla quale compete il rilascio autorizzatorio.

Pertanto STARPLAST declina ogni responsabilità inerente il Titolo V del D. Lgs. 152/06 ogni qualvolta non sia eseguita la corretta scelta di soluzione impiantistica autorizzata dall'Ente competente, la corretta procedura di gestione del processo depurativo e l'utilizzo inadeguato delle apparecchiature e dei manufatti componenti l'impianto stesso.

Per le corrette procedure di posa gestione e manutenzione, si rimanda a quanto indicato negli appositi libretti allegati alla fornitura.

UFFICIO TECNICO

Il Responsabile Ufficio Tecnico

